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Abstract— Manipulating arbitrary objects in unstructured
environments is a significant challenge in robotics, primarily
due to difficulties in determining an object’s center of mass. This
paper introduces U-GRAPH: Uncertainty-Guided Rotational
Active Perception with Haptics, a novel framework to enhance
the center of mass estimation using active perception. Tradi-
tional methods often rely on single interaction and are limited
by the inherent inaccuracies of Force-Torque (F/T) sensors.
Our approach circumvents these limitations by integrating a
Bayesian Neural Network (BNN) to quantify uncertainty and
guide the robotic system through multiple, information-rich
interactions via grid search and a neural network that scores
each action. We demonstrate the remarkable generalizability
and transferability of our method with training on a small
dataset with limited variation yet still perform well on unseen
complex real-world objects.

I. INTRODUCTION

With the growing interest in robotics manipulation in the
wild, researchers have been investigating ways for robots to
interact with different objects. A key factor in achieving a
secure grasp is the proximity of the grasp point to the object’s
center of mass (CoM). Yet, not much research has been
trying to address a generalizable approach to estimate the
CoM of arbitrary objects. Much recent research on grasping
has been focused solely on grasping onto the object [1] [2],
often overlooking how the choice of grasping points and the
physical properties of objects affect successful manipulation.
It has been noted in works like [3] and [4] that improper
grasping points or poses on objects with certain properties
can lead to failures, typically due to rotational and incidental
slips. Knowing the CoM of the object, on the other hand, can
help decide a more stable and robust grasping strategy, and
ensure safety during manipulation.

This work provides a framework to perceive an arbitrary
object’s CoM. The most intuitive solution is using the Force-
Torque (F/T) sensor’s reading and solving CoM analytically.
However, the physical limitations of F/T sensors provide
inaccurate readings caused by the measurement noise and
in-hand slips, therefore analytical solutions often fail. Addi-
tionally, analytical solutions are unable to provide uncertainty
measurement, making it hard to estimate an informed action
to improve the measurement. Instead, we turn to a data-
driven solution to learn the correlation between the F/T Read-
ing and the CoM locations with neural networks. Moreover, a
vertical grasping pose prevents obtaining the location of CoM
on the z-axis. Hence, we cannot predict precisely enough
with a single F/T reading. Our strategy incorporates active
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Fig. 1: We design an active perception algorithm to estimate
the center of mass of arbitrary objects. Our algorithm uses the
first estimation from the F/T reading to infer a new rotational
orientation that improves the estimation, then executes the
action and estimates again with a second F/T reading.

perception techniques to enhance accuracy, which identifies
the orientation that maximizes information gained from the
initial grasp. Our methodology involves actively guiding the
robot to adjust its orientation which will provide a more
accurate prediction.

Therefore, we propose U-GRAPH: Uncertainty-Guided
Rotational Active Perception with Haptics to address the dif-
ficulty found in the CoM Estimation problems as illustrated
in Fig. 1. We construct a Bayesian Neural Network (BNN)
[5] for uncertainty quantification, obtaining a standard mea-
surement deviation aligned with physical intuition. First, the
robot picks up the object with a fixed orientation, providing
a prior estimation of the CoM. With the estimation’s mean
and standard deviation, we employ ActiveNet to infer the
orientation that can provide the greatest information gain.
From the subsequent orientation, the BNN can provide a
new estimation of CoM from the latest F/T reading.

Our system is trained on 204 grasp trials each with 100
rotations with 20 weight distributions. Despite being trained
only on two customized simple data collection objects, we
demonstrate its ability to generalize to any arbitrary rigid
object in real life. It shows an average of 1.47-centimeter
error with a 7.6% error on unseen complex real-world
objects in a zero-shot transfer manner. Our system shows



generalizability to all kinds of objects with different contact
geometry, surface friction, and overall shapes.

II. RELATED WORKS

A. Physical Property Estimation

A critical premise for the successful manipulation of
different objects is an understanding of their physical prop-
erties. For example, liquid properties were well-studied by
previous research [6] [7] [8]. Moreover, many papers also
showed that with perception, the precision and accuracy of
manipulation can be increased [9] [10] [11]. Rigid body
properties are also important for manipulation. Zeng et al.
used residual physics to help decide a better-tossing policy
for a wide range of objects [12]. Wang et al. demonstrated
their algorithm can learn implicit properties and improves
their swing policy with tactile explorations [13]. Murooka
et al. embedded physical reasoning into manipulation skills
[14]. Most previous works only consider physical property
as a vague or distilled representation, while we focus on
estimating the explicit measurement of the center of mass.

B. Center of Mass Estimation

A more related set of works targeted directly at the center
of mass estimation. Hyland et al. utilized iterative pushing to
find a 2-dimensional CoM [15]. McGovern et al. pointed out
that with reinforcement learning of stacking random shape
objects in a simulator, they can estimate the CoM [16]. Mc-
Govern and Xiao also proposed a Reinforcement Learning
pipeline in the real world to estimate the CoM of utensils
with torque-sensing [17]. However, to our knowledge, none
of the methods are generalizable to find the 3-dimensional
CoM for arbitrary objects in real life, which is the problem
we are trying to solve.

C. Active Perception

Humans naturally possess the ability to explore an object
actively with touch [18]. Inspired by this, many works have
studied active perception in robotics with haptic or tactile
sensing. Xu et al. employed active tactile perception to
classify objects and showed improvement in both accuracy
and efficiency [19]. Uttayopas et al. utilized active haptic
sensing to classify objects with different properties [20].
Kuzliak et al. designed a framework to interactively learn
the physical properties of an object with informed action
selection [21]. The works mentioned above only concern a
discrete action space, but in our problem setting, we have a
continuous action space. Yuan et al. used active perception
to decide the next best grasping location to help increase
accuracy for clothes material classification [22]. Ketchum
used active exploration on a scene to understand its property
and shows that with active planning the exploration can
performed better [23]. In our work, on the other hand, instead
of classification, we are interested in regression tasks with
continuous action space and aim to solve the CoM estimation
with only two actions.

III. METHOD

Targeting a generalized and robust CoM estimation frame-
work, we propose U-GRAPH: Uncertainty-Guided Rota-
tional Active Perception with Haptics. This system incor-
porates a BNN that processes 6-dimensional force-torque
readings and 2-dimensional orientation data to yield a 3-
dimensional CoM estimation. U-GRAPH also features Ac-
tiveNet, which utilizes the output from the BNN to determine
the next best action. Assuming the robot has already grasped
the object, we perform two measurements at different orien-
tations to accurately estimate its CoM. The BNN supplies
both prior predictions and quantifies uncertainty through the
standard deviation. The ActiveNet takes in prior estimation
distribution and uses grid search to calculate a score for
each action to determine the best one. Specifically, the action
space is the 2-dimensional orientation of the grasping pose.
We define the action executed as changing the pose. In
the subsequent subsections, we discuss an intuitive physics
model, introduce the individual modules of this framework,
and present the implementation of online inference.

A. Intuitive Model of Arbitrary Object’s Center Of Mass

Fig. 2: Illustration of the simplified model of CoM on a
real-world object. In our setup, we try to estimate the dx,
dy, and dz which are the displacement of CoM away from
the grasping point.

After grasping the object, we define its CoM by some
displacement dx, dy, and dz away from the grasping point.
These axes are defined in the world coordinates, as illustrated
in Fig. III-A. Ideally, we could directly employ an analytical
solution using the 6-dimensional F/T reading from an F/T
sensor to accurately determine the CoM. However, real-world
complications such as measurement noise and potential in-
hand slipping of the object complicate this process. To coun-
teract these issues, a second measurement is necessary. Our
method aims to reduce the effect of real-world challenges
towards a more robust and accurate prediction.

B. Bayesian Neural Network for Uncertainty Qualification

The purpose of using BNN is to get a standard deviation
for its output value. Instead of training to specify the exact
weight of each network node, in the BNN framework, we



Fig. 3: a) Flowchart for training Bayesian Neural Network. We train BNN with Markov Chain Monte Carlo and No U-Turn
Sampler iteratively. b) Flowchart for training an active perception module. We calculate the score from two orientations as
the supervised label of the ActiveNet. We use the first prediction’s mean and standard deviation along with the second angle
as the input to the network. c) Flowchart for inferencing with U-GRAPH. The robot first grasps with a fixed orientation,
then passes the F/T reading with (0, 0) as orientations into the BNN. We use ActiveNet and grid search to find the second
action. We pass the second F/T reading with the orientation through BNN to get a secondary prediction and join that with
the first prediction to form the posterior prediction.

want to learn a posterior distribution p(w|D) given the input
dataset D. Each node in our BNN will have a distribution
instead of a deterministic value. Given this distribution, we
can obtain the estimated distribution of unseen data P (ŷ|x̂)
by getting the expectation of the predictive distribution:

P (ŷ|x̂) = EP (w|D)[P (ŷ|x̂,w)]

w denotes the posterior distributions of the nodes in the
BNN, x̂ denotes the input testing data and ŷ denotes the
output prediction.

However, to evaluate this expectation value, we will need
an infinite ensemble of networks as mentioned in [24]. To
practically approximate this, Monte Carlo sampling meth-
ods, particularly Markov Chain Monte Carlo (MCMC), are
employed to reduce training and inference costs. MCMC
provides unbiased samples from the posterior, facilitating
effective posterior inference and backpropagation. Further
improving this approach, the Hamiltonian Monte Carlo
(HMC) and No U-Turn Sampler (NUTS) are incorporated to
avoid the inefficient random walk behavior and dynamically
determine the optimal number of steps in the HMC. This
automatically adjusts the BNN parameters after each sample
to enhance convergence and accuracy [25] [26].

To implement the BNN and MCMC with NUTS, we used
Pyro [27] to construct the network, train on our dataset, and
evaluate its predictive function. This method gives us reliable
uncertainty of the regression prediction of our MLP for active
perception. The illustration of the BNN training process can
be found in Fig. 3 a).

C. ActiveNet: Action Selection Network

As mentioned before, our actions have 2 degrees of
freedom, the last two joints on the robot are free to move,

while all other joints are fixed during perception. We always
keep the orientation [0,0] as the first orientation. This is the
orientation where the gripper points straight down, as shown
in Fig. 3 c). To find the best second orientation that improves
the prediction result, we consequently design ActiveNet and
use grid search to find such orientation. The most intuitive
way to generate a new action is to directly estimate from the
prediction of the BNN and train the network to predict the
best subsequent orientation. In our case, there are usually
multiple orientations that the robot can take to minimize
the error of CoM prediction. A simple regression model
explicitly predicts a single “best” action, but it can overlook
other “good” actions, especially if these are localized away
from the highest peak.

We therefore try to perform a grid search through the
action space and estimate a score to determine how good
each action is. For simplicity, we define this score as the
error of estimation obtained by the BNN after we perform a
specific rotation that results in the orientation a. As a result,
the input of our ActiveNet as illustrated in Fig. 3 b) has
three parts, the estimation from BNN, the standard deviation
from BNN, and a new proposed action that be scored on.
The output of the ActiveNet is a score of this new proposed
action.

D. Inference

Our inference pipeline is illustrated in Fig. 3 c). We first
use the fixed orientation to generate a prior estimation of
the CoM location. Then ActiveNet performs a grid search
over the entire action space and calculates the score for each
action with prior estimation as input. It uses the action with
the minimum action score to proceed. After we obtain the
new F/T reading from the second orientation, we then predict



the CoM again with the same BNN. Finally, we treat each
orientation as an independently observed measurement of
CoM. Since our network can provide a quantified uncertainty,
we assume the two measurements are Gaussian. Therefore
we can obtain the posterior estimation with:
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IV. EXPERIMENT SETUP

In this section, we discuss the hardware setup of the
CoM estimation problem. We also explain how to set up
the hardware, collect training data, and implement models.

A. Hardware Setup

The hardware system features a 6-DoF UR5e robot arm.
Attached to the robot’s wrist is a 6-axis NRS-6050-D80
F/T sensor from Nordbo Robotics with a sampling rate of
1000 Hz. The arm is also equipped with a WSG-50 2-
fingered gripper from Weiss Robotics with customized PLA
3D-printed fingers. The system is shown in Fig. 4 a).

For data collection, we designed and 3D-printed two
objects with dimensions of 15cm × 15cm × 8cm, each in-
cluding two holders sized 4cm × 4cm for placing AprilTags
[28]. The plate object weighs 127.36 grams and allows grasp
onto the center. The box object weighs 185.36 grams and
is designated to be grasped on the side. We utilize standard
laboratory weights for the experiments, specifically two 100-
gram weights and one 200-gram weight. Fig. 4 b) shows the
printed version of these objects, as well as weights that are
randomly placed on them.

B. Data Collection

As mentioned in Sec. IV-A, we only collect data from the
two customized objects for CoM estimation. Our model is
based on the premise that the CoM of any grasped object can
be fundamentally described by the offsets dx, dy, dz, and
the gravitational force G acting on the object. During each
trial, we randomly select 0 to 2 weights to be fixed onto
one of the objects. On the software side, our data collection
algorithm first uses the overhead camera to detect AprilTag
and calculate the CoM while figuring out the graspable zone
on the object. It randomly generates a valid grasping point
from the graspable zone and calculates the dx, dy, and dz
from the CoM. Finally, the robot moves to the location and
grasps the object to start a trial of data collection. This data
collection algorithm saves the trouble of intensive human
labor and allows us to do a larger scale of data collection.

After securing a grasp, the robot rotates the object to 100
different orientations (excluding the default [0,0]), recording
the F/T readings at each position. We use the difference
between the F/T reading with the object gripped and the F/T
reading with nothing between fingers. Then, we loop through
the entire 100 different orientations to calculate the action
score for each of them. In total, we spent about 150 hours
on data collection to generate a dataset from 204 different
grasps, comprising 18,893 F/T readings.

Fig. 4: a) Example of a data collection robot grasping with
the location of F/T Sensor and gripper. b) Printed data
collection objects in the real world, and standard lab weights
for training data collection. AprilTags are placed on all of
the objects. We refer to the object on the left as Plate and
the object on the right as Box.

C. Model Implementation

The BNN has a backbone with a hidden size of [256,
128, 64]. To speed up the training process, we first train with
PyTorch for a deterministic MLP with RAdam [29] optimizer
and a learning rate of 0.001 for 500 epochs. Then we use the
pre-trained weights as mean and standard deviation of 0.5 as
the initialization for our BNN. We train the BNN using Pyro
with 1000 samples and 200 warmup steps.

The ActiveNet is a 5-layer MLP with a hidden size of
[1024, 1024, 512, 64]. We train the ActiveNet with RAdam
optimizer with a learning rate of 0.0001 for 500 epochs.

V. RESULTS AND DISCUSSION

In this section, we present the result obtained from the
CoM estimation with the U-GRAPH pipeline. We evaluate
the performance of our model on the customized data col-
lection setup with unseen weight distributions. Additionally,
we experiment on real-world objects with known CoM to
validate the effectiveness of our proposed framework.

A. Baseline Methods

In contrast to our proposed method, we implement the
following 3 different baseline methods:

Analytical Solution: The analytical solution assumes a
perfect world scenario with no noise in the F/T measurement
and no in-hand slip. We can easily obtain the CoM of any
object using the following formula: r⃗CoM = τ⃗×F⃗

|F⃗ |2
, Where F⃗

denotes the force reading and τ⃗ denotes the torque readings.



Since we are only using the [0, 0] orientation, no torque
should be caused by the offset of the Z-axis. However, real-
world measurement noise introduces randomness into this
calculation. Additionally, the F/T sensor produce inefficiently
accurate torque measurement when the sensor is not placed
vertically. Therefore, in this paper, we use analytical solu-
tions only in the default pose as the baseline method.

One Grasp: The One Grasp method only uses the first
part of our proposed pipeline which is the model that takes in
one F/T measurement and tries to infer the CoM. Unlike the
analytical solution, this method also uses a neural network
for estimation. The MLP used is the same one we used for
active perception inference.

The previous two baselines have a fundamental flaw that
based on one grasp it is impossible to evaluate the offset on
the Z-axis.

Random Rotate: The Random Rotate method uses two
measurements similar to our proposed method. However,
instead of doing an informed action, this method uses a
random action selected from the continuous action space to
do measurement again. After getting the new reading, we
will use the same BNN and joint distribution methods as
our proposed method to estimate the CoM.

B. CoM Estimation on Customized Training Objects
In our first experiment, we use the same plate and box

setup but vary the weight configurations. We test five dif-
ferent weight configurations across both objects: no weight,
a single 100-gram weight, two 100-gram weights placed
together, two 100-gram weights placed separately, and two
separate weights that weigh 300 grams in total. For each
configuration, we conducted five randomly selected grasps.
The data for this experiment is captured using the same
overhead camera and AprilTags setup as training. The results
of these experiments are detailed in Figure 5, where we
present a comprehensive analysis including the mean error
and mean standard deviation for each method applied.

Fig. 5: Mean error and mean standard deviation (shown with
the error bar) of the estimated center of mass for customized
objects obtained from different methods.

C. CoM Estimation on Unseen Real-World Objects

We also perform experiments on a set of 12 real-world
objects that are commonly seen in daily life. We predefined
the grasping point and found the ground truth CoM by
balancing the object on each axis with a gripper. The objects
have weights ranging from 43.4 grams to 613.2 grams

with maximum dimensions from 56 mm to 285 mm. We
attempt to create variations in the X , Y , and Z axis of the
measurement to assess the robustness of the methods. We
present the result on the error of each axis for each object
in Tab. I along with each object’s dimension and weight. We
will give a more comprehensive discussion and analysis in
Sec. V-E.

D. Additional Study on the Effect of Weights of the Object

The performance of our algorithm is observed to decline
when the object weight falls outside the range of our initial
data collection, as highlighted in Tab. I. We have set up a
focused experiment using the Mustard Bottle (Object 11 in
Tab. I) as our primary test subject to further investigate. For
this experiment, we supplemented the Mustard Bottle with
three different sets of weights, bringing the total weights to
244.6 grams, 446.2 grams, and 648.1 grams, respectively.
We tape sets of standard laboratory weights on the side of
the mustard bottle around the measured CoM location. The
first two weights fall within the weight range of our collected
dataset, while the last weight surpasses the upper limit of our
previous data collection. We maintain a consistent grasping
position across all weight variations to isolate the effect
of weight on our CoM estimation accuracy. The specific
grasping locations and the errors in the CoM predictions
made using our method for each weight configuration are
documented in Tab. II.

E. Limitation and Discussion

Our approach aims to minimize the total error in CoM
estimation, which occasionally compensates across different
axes. As evidenced in Tab. I, while our method might yield
slightly poorer results on one axis, it significantly enhances
performance on others. Nonetheless, our method demon-
strates superior accuracy in 10 out of the 12 test objects when
compared to other techniques. This demonstrates the effec-
tiveness of taking a second measurement, as highlighted by
our comparison with the baseline method, One Grasp, and
the importance of informed active perception noted against
the Random Rotate method, which lacks the informed
approach of our second measurements. We also show that
with a second action, we can always improve the estimation
along the z-axis. This aligns with the intuition that a new
orientation will introduce new information about the offset
of the z-axis.

To further expand this work, predictions could benefit from
multiple actions and continuous updates to the estimated
center of mass. In this paper, our objective is to demonstrate
that this predictive framework can enhance CoM estimation,
rather than to claim a complete solution to the problem.
Future research should investigate the optimal number of
rotations and explore whether a series of actions and pre-
dictions can, when combined, converge to the true CoM.

Sec. V-D illustrates how the objects’ weight range, span-
ning 127.36 to 585.36 grams, affects our algorithm’s per-
formance. However, in practice, heavier objects are often



Objects

Image

Dimensions
(mm) 285 × 50 × 50 185 × 45 × 40 244 × 42 × 39 51 × 152 × 99 140 × 65 × 25 105 × 105 × 25

Weight (g) 260.7 325.1 136.9 307.7g 144.8 122.7

Prediction
Error
(mm)

Axis X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
One Grasp

Only 11.4 14.2 14.0 17.8 16.1 6.2 12.0 5.9 8.4 16.8 16.9 19.8 8.1 16.7 11.5 2.6 9.1 18.4

Analytical
Solution 6.9 5.5 8.4 6.3 4.7 17.9 14.0 3.1 9.3 6.1 3.8 10.7 9.9 5.5 19.4 2.3 3.2 21.2

Random
Rotate 10.1 22.2 13.7 13.6 18.8 3.3 12.2 4.9 13.4 5.2 14.8 17.1 13.3 11.2 9.2 2.4 9.4 18.5

U-GRAPH
(Ours) 2.7 4.0 5.6 5.0 5.6 4.3 3.9 2.2 6.3 5.2 3.0 9.3 3.3 3.0 5.0 2.2 6.8 7.9

Objects

Image

Dimensions
(mm) 218 × 3 × 3 156 × 96 × 64 135 × 109 × 94 175 × 51 × 188 92 × 56 × 192 56 × 56 × 56

Weight (g) 197.4 172.6 400.0 613.2 (OOD) 43.4 (OOD) 76.8 (OOD)

Prediction
Error
(mm)

Axis X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
One Grasp

Only 14.4 17.5 9.4 31.0 9.0 16.2 13.7 6.1 21.1 18.4 25.3 26.4 25.7 15.3 8.1 17.2 8.4 8.0

Analytical
Solution 4.6 3.0 13.7 27.9 4.8 9.3 6.8 6.5 17.3 13.5 9.2 17.9 7.3 8.2 11.4 1.8 4.9 7.5

Random
Rotate 15.4 23.2 18.0 26.2 3.8 20.3 11.9 20.9 14.4 11.0 20.1 25.3 25.9 8.5 12.1 15.9 4.3 4.2

U-GRAPH
(Ours) 4.5 7.7 8.7 21.6 3.6 8.5 6.7 6.5 10.9 11.8 15.8 15.6 12.1 7.4 10.1 13.5 9.3 3.2

TABLE I: The table shows the mean error of each axis of all 12 real-world objects. We performed 5 different grasp
configurations on each object and tried to maximize the variations of dx, dy, and dz for each grasp. We also show the
results of the baseline methods and bold the best-performing estimation for each axis of each object. The X , Y , and Z
axes are defined by the world frame. The OOD label in the last three objects’ weight means that their weight is out of our
collected data distribution.

Weights (g)
Mean Error (mm)
X Y Z

43.4 (OOD) 12.1 7.4 10.1
244.6 5.0 6.1 6.4
446.2 6.1 4.4 5.6

648.1 (OOD) 15.6 12.7 13.2

TABLE II: The left image shows the grasping locations on
the mustard bottle. The right table shows the mean prediction
error on each axis for different weights. The X , Y , and Z
axes are defined by the world coordinate. The OOD label
means the weight is out of our training data distribution.

inherently unstable for grasping, while extremely light ob-
jects fail to generate sufficient F/T signals to overcome noise,
making it difficult to expand the dataset in these regions.
Despite these challenges, our method demonstrates robust
performance across diverse real-world objects that differ sig-
nificantly in contact geometry, surface friction, and density
from the training set, confirming its strong generalizability.

Moreover, our system encounters difficulties with large
slips, especially with heavier objects or when the CoM
is significantly offset from the grasp points. This is a
common challenge in achieving stable grasps and accurate
CoM estimations. To address these difficulties, we plan to

integrate fingertip GelSight sensors [30] into our system in
the future. These sensors will enable precise measurement
of slips during manipulation, allowing us to gather critical
data to refine our algorithm further. By enhancing our ability
to detect and adjust for slips, we aim to improve both the
stability of grasps and the robustness of CoM estimations.

VI. CONCLUSIONS

This paper presents U-GRAPH, a novel approach to the
center of mass estimation with active perception. We design
a pipeline that contains two main components: a Bayesian
Neural Network that can provide prediction and its associated
uncertainty, and an ActiveNet that produces an informed
rotation based on the prior estimation. This approach reduces
the need for repetitive grasping by replacing it with an
efficient and effective rotation. Our experiments validate the
effectiveness of U-GRAPH, which consistently outperforms
traditional methods and adapts well to real-world scenarios.
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